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SYNOPSIS 

The penalty function formulation for incompressible hyperelastic solids was first proposed 
about 30 years ago. Since then all studies have been limited to invariant type formulation 
of the strain energy function, although it is well known that this formulation does not 
correctly describe the behavior of a real material. On the other hand more realistic con- 
stitutive equations, based on general measures of the strain only, have been incorporated 
to mixed finite element algorithms. In this article, a penalty function formulation is proposed 
for the analysis of stress field in materials with constitutive equations based on the general 
measure of strain. The reduced integration method is used to weaken the penalty constraint 
in order to obtain meaningful numerical results. The incremental equilibrium equations 
are solved using the regular Newton-Raphson algorithm. The method is applied to evaluate 
the stress field in materials subjected to plane strain conditions. Satisfactory agreements 
have been obtained with analytical solutions when available. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

The stress analysis of rubber-like solids offers two 
unique features as compared to the analysis of more 
conventional structural materials; first, these ma- 
terials are nearly incompressible and second, they 
are capable of experiencing large deformations. For 
linear incompressible solids two methods of analysis 
have been employed the mixed finite element 
method (MFEM)'.' and the penalty finite element 
method (PFEM).3-7 The first method of analysis 
treats the displacements and the hydrostatic pres- 
sure degrees of freedom as the unknown variables. 
The second method treats the material as nearly 
incompressible and uses FE models in which the 
displacement degrees of freedom are the only un- 
knowns in the system of the discretized FE equa- 
tions. 

Similar techniques have been employed for the 
stress analysis of nonlinear rubber-like solids. 
The mixed FE technique has been successfully em- 
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ployed for the numerical solution of hyperelastic 
and the PFEM has been extensively 

discussed in the following references.14-16 Recently, 
the so-called augmented Lagrangian method was 
employed for the numerical solution of the rubber- 
like s01ids.l~ Compared to the MFEM the PFEM 
has fewer independent variables and hence poten- 
tially requires less computer time. 

All the proposed PFE models for rubber-like ma- 
terials assumed that the constitutive equations are 
derived from the invariant type formulation of the 
strain energy function." However, it is well known 
that this formulation does not yield the appropriate 
constitutive equations for the real description of the 
response of hyperelastic solids. In the last 30 years 
more realistic strain energy functions methods were 
published in order to describe the correct response 
of these materials. The most of the available strain 
energy functions are based on the Valanis-Landel 
hypothe~is.'~ For instance, we might mention the 
strain energy functions developed by Ogden20'21 and 
Crossland and Van der Hoff." Also the Blatz et aLZ3 
strain energy function predicts the response of a hy- 
perelastic solids but does not follow the above men- 
tioned hypothesis. 
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The scope of this article is to develop a penalty 
function FE algorithm based on the principal axes 
formulation. The Ogden's strain energy function was 
employed for the development of the appropriate 
constitutive equations. An alternative method of 
analysis based on the mixed FE technique was de- 
veloped by Duffett et al.24,25 

The fundamental kinematic concepts that are 
needed along the course of this study are presented 
and the fundamental concepts of the general mea- 
sure of strain are discussed. These concepts have 
been applied by Ogden2' for the description of the 
elastic large deformation of the rubber-like solids. 
The Ogden's strain energy function is briefly ex- 
amined. The first order elastic moduli for hyper- 
elastic solids, based on the Ogden's strain energy 
function are discussed, and the penalty function ap- 
proach is applied in order to eliminate the pressure 
degree of freedom when the material is subjected to 
plane strain conditions. We also develop the material 
properties matrix for plane strain conditions. The 
general principle of virtual work26 for elastic solids 
is discussed. The total Lagrangian f~rmula t ion~~ was 
adopted for the linearization of the differential form 
of the equilibrium equations. The discretization of 
the equilibrium equations using the FE technique 
is discussed. The stiffness matrix was developed for 
plane strain conditions. In the case of plane strain 
conditions the reduced integration t e ~ h n i q u e ~ ~ - ~ '  was 
applied for the numerical evaluation of the penalty 
terms. 

Two numerical examples were run according to 
the proposed model in order to confirm the validity 
of this algorithm. The first example deals with the 
uniform tension of a rubber sheet with a small cir- 
cular hole located at the center of the sample; the 
second example deals with an infinitely long thick- 
walled cylinder subjected to internal pressure. 

FUNDAMENTAL KINEMATICS 

Consider a material point P of a solid body B. Sup- 
pose that P occupies the position & when B is in a 
reference configuration at t = 0. Let P occupy the 
instantaneous position at time t. Then the motion 
of P may be described by 

Thus the instantaneous location x may be repre- 
sented as a function of the undeformed location X 
and the time t. At an increment of time At the ma- 
terial point P is located at s*. The equation of mo- 

tion from the undeformed state to the deformed 
configuration at  t = t + At is given by 

The gradient F of s with respect to & is given by: 

F = Grad($) (3) 

where Grad is the gradient operator with respect to 
the &. The F is called the deformation gradient ten- 
sor at the material point P at  time t by the theorem 
of polar d e c o m p o ~ i t i o n . ~ ~ . ~ ~  F may be split into a 
symmetric positive definite stretch tensor and an 
orthogonal rotation tensor. Thus 

F = R U  (4) 

where R is the rotation tensor and 

RU = VR (5) 

where U and V are the right and left stretch tensors, 
respectively. In general, the calculation of the com- 
ponents of U and V is involved and it is preferable 
to introduce the deformation tensors 

which are called the right and left Cauchy Green 
tensors, respectively. It follows from their definitions 
that both tensors are symmetric and positive defi- 
nite. 

GENERALIZED STRAIN MEASURE 

A material body subjected to a deformation assumes 
a new configuration. It is convenient to define a 
measure of the deviation of this configuration from 
a suitably chosen reference configuration. Any mea- 
sure will serve that determines the directions of the 
principal axes of the deformation and the magnitude 
of the deformation in these directions. Such a mea- 
sure is called strain. We recognize it as being a mea- 
sure of the difference in distance between two ma- 
terial particles in different configurations. A defor- 
mation of a body is most easily described by a body 
coordinate s y ~ t e m . ~ ~ . ~ ~  It is convenient to adopt one 
system (the Lagrangian system) for the undeformed 
configuration and another (the Eulerian system) for 
the deformed configuration. The deformation can 
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then be viewed as a transformation from one system 
to the other. Which one is chosen as the reference 
system is immaterial. Along the course of this study 
we adopt the Lagrangian system as the reference 
system. In the theory of finite elasticity the most 
widely used strain measures are the Green's strain 
tensor 

E=(?), 

defined in terms of the Lagrangian coordinates, and 
the Almansi's strain tensor 

e=r+) ,  (9) 

defined in terms of the deformed or Eulerian coor- 
dinates. The tensor C is the inverse of Finger's ten- 
sor, B. The matrices C and B are symmetric and 
can be diagonalized by orthogonal transformations, 
that is, 

and 

where C and B are defined via Eqs. (6) and (7). The 
matrices N and g are formed from the eigenvectors 
of the C and B, and A2 defines the matrix of the 
eigenvalues of C equal with those of B. The matrix 
A is diagonal whose elements X1, X2, and A3 are the 
principal stretches. It can easily be proven3' that 
the eigenvectors 11 and are connected by: 

where g = ( n l ,  n2 ,  n3) and E = ( N I ,  N z ,  N3). 

as follows: 
We define a generalized Lagrangian strain tensor 

where @ is a matrix function of A, that is, @ = @(A) 
and it satisfies the condition 

A particular form of the generalized strain measure 
can be obtained by letting 

Aa - I 
@(A) = - (15) a 

where a is a strain parameter that can be any real 
number. The strain function defined by (15) is called 
the a-measure of strain. Substitution of (15) into 
(13) yields: 

Obviously, for a = 2 the Lagrangian strain tensor 
is reduced to E. The a-measure of strain was intro- 
duced by Seth33 and has been applied by OgdenZ0 
and independently by Blatz et al.23 for the descrip- 
tion of the elastic large deformation behavior of 
rubber-like solids. The generalized strain measure 
has recently been applied to nonhomogeneous de- 
formations in rubber-like solids.34 The strain pa- 
rameter a is a material parameter and must be de- 
termined by experiment. 

ODGEN'S STRAIN ENERGY FUNCTION 

Since the 1940s a large number of strain energy 
functions have been proposed for hyperelastic in- 
compressible solids. Between them we might men- 
tion the Neo-Hookean and M~oney-Rivlin'~ strain 
energy functions based on the principal invariants 
of the right Cauchy-Green strain tensor. Unfortu- 
nately, these functions can predict the experimental 
data only up to the extension ratio 1.5. In 1972 
Ogden20.21 proposed a new form of the strain energy 
function based on the general measure of strain. The 
proposed function has the form: 

where the a-measure of strain is given by 

with X, the principal stretch ratio, 
The upper limit of the first summation m defines 

the number of terms needed in order to successfully 
describe the observed experimental stress-defor- 
mation relationship in simple tension, pure shear, 
and equibiaxial shear. The material parameters (&, 
ak) must be determined by a nonlinear least square 
fitting. 
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FIRST ORDER ELASTIC M O D U L I  FOR 
HYPERELASTIC INCOMPRESSIBLE SOLIDS 

For hyperelastic incompressible solids the eigen- 
values of the second Piola-Kirchhoff stress tensor 
are given via the following equation21 

where T, is given by: 

- aw 
aEj 

T .  = - 

where W defines the strain energy function given in 
(17), and E, are the principal values of the Green 
stain tensor as defined by Eq. (9). The hydrostatic 
pressure p is determined from the boundary value 
problem. Substitution of (17) into (20) yields the 
proper number of the TKL-tensor, 

The principal stretches Aj” can be determined as a 
function of the components of the right Cauchy- 
Green strain tensor CKL.  Indeed, the characteristic 
equation of the tensor C K L  is: 

and 

The vectors ik ( k  = 1-3) define an orthonormal 
Cartesian basis with respect to the reference 
Lagrangian coordinate system. The functions AK 
are given by A K  = ((A; - CKK) ,  + C?2)1’2 where K 
= 1,2.  

The first order elastic moduli for hyperelastic in- 
compressible solids are defined by the following 
equation: 

where the tensor TKL for hyperelastic incompressible 
solids is given by 

The second order tensor may easily be computed 
using its eigenvectors N and its eigenvalues [Eq. 
(21)]. With respect to the orthonormal basis ik 

( k  = 1, 2, 3) the components of the tensor Ti, are 
given by 

For plane problems the solution of the above equa- 
tion yields the principal stretches Aj” as a function 
of the components of C K L  tensor. That is, 

c11 + c 2 2  
A?,, = ( ) * fd(ci1 f C2d2 i- 4C?z (23) 

A: = c 3 3 .  (24) 

The eigenvectors 
following equation: 

may readily be computed by the 

For isotropic solids, the principal directions of the 
second Piola-Kirchhoff stress tensor and those of 
the right Cauchy-Green strain tensor C are the 
same. It may easily be seen from Eq. (25 )  that for 
two-dimensional problems the principal axes of the 
Clj tensor are: 

where { T K L }  is a diagonal matrix whose entries are 
the principal values of the stress tensor T [see 
Eq. (21)l. 

Assuming an Ogden type of strain energy function 
it can be proven21 that the components of the ma- 
terial properties matrix with respect to the principal 
axes N are 

K, L = 1, 2; A& = A: (30c) Lllll 
LKLKL = - 2 ’  

with respect to the orthonormal basis ik ( k  = 1-3) 
the material properties matrix is 
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In this case, there is no condition to eliminate 
the pressure degree of freedom from the equilibrium 
equations. In order to eliminate the pressure degree 
of freedom the penalty function is 
used. According to this method the pressure is re- 
placed by: 

where e is a small positive real number, the so-called 
penalty parameter and G(13) is a continuous function 
of the third invariant of the Gij tensor. The function 
G is called the penalty function and satisfies the 
following properties: 

G ( 1 )  = 0,  G(x)  # 0 when x # 1 (33) 

Along the course of this work we assume that the 
penalty function is a logarithmic function of the 
third invariant of the right Cauchy-Green strain 
tensor, 

1 
2 

G(I3) = - - In(13) (34) 

hence the pressure is given by 

(35) 
1 

p = - - ln(13). 
2E 

The third invariant of the CI tensor is given by: 

For incompressible nonlinear solids the motion is 
isochoric, which implies that I3 must be equal to 
unity (that is, I3 = 1). The principal values of the 
second Piola-Kirchhoff stress tensor are 

- P O + P  T .  = T .  - - 
J J xi’ (37) 

where the constant po is introduced in order for the 
stress Tj to be equal to zero at the undeformed state. 
It can be easily seen from Eqs. (21), (38), and (40) 
that 

rn 

PO = C Pn. 
n=l  

For two-dimensional problems the matrix Q, 
which defines the orientation of the principal axes 

N k  with respect to the orthonormal basis ik ,  is 

cos(8) -sin(@ 0 
[&I = (sindo) ~ 0 2 8 )  i) 

where the principal angle 8 is given by: 8 = arc- 
C O d N i i ) .  

For a plane strain condition, it can be shown (see 
Appendix A) that the material properties matrix is 

(39) 

PRINCIPLE OF VIRTUAL WORK 

As it was pointed out, the solid occupies the state 
Bo at the undeformed state (i.e., at t = 0). At time t 
the configuration of the solid has been changed to 
B1 and at t = t + At the medium is at the configu- 
ration BP. The principle of virtual work says that the 
work done on the deformed body from the external 
forces should be balanced from the internal forces, 
that is, 

where the backsubscript “0” indicates that the ki- 
nematic quantities are determined with respect to 
the reference configuration Bo and the backsuper- 
script 2 denotes that the kinematic quantities are 
determined with respect to the configuration Bz. The 
‘R denotes the incremental work performed by the 
external forces, that is body forces and surface frac- 
tions on the body. The external work isz7 

where fl and Sl denote the body forces and the sur- 
face tractions, respectively. The 6ul defines an in- 
cremental displacement performed by the external 
forces on the body. Equations (41) and (42) define 
the differential form of the equilibrium equations of 
motion. 

According to Bathe,27 the linearized equations of 
variation are 

Jvo A T K A A ~ K L )  d v  + Jvo ~ ( A ~ K L ) c K L M N ( A ~ M N )  d v  

r 
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where CKLMN defines the material properties matrix 
and the quantities A v K L  and AeKL define the linear 
and nonlinear incremental parts of the strain ten- 
sor EKL. the matrix [Q] defines the rotation matrix given in 

Eq. (39)' and the pressure termspo, p are defined in 
Eqs. (35) and (38). 

FE DISCRETIZATION OF EQUILIBRIUM 
EQUATIONS 

NUMERICAL EXPERIMENTS 
Following the traditional isopurumetric FE discret- 
ization of the equilibrium e q ~ a t i o n , ~ * ~ ~ , ~ ~ , ~ ~  Eq. (43), 
for two-dimensional plane strain problems, yields 
the following discretized FE equations in the form: 

where 

r 

Consider the extension of a square elastomer sheet 
with a circular hole at the center of the sample. The 
geometry of the testing material and the FE mesh 
are shown in Figure 1. The thickness of the specimen 
was assumed to be infinitely long and a uniform 
pressure was applied along the two opposite edges 
of the sample in the x-direction. Because of the 
symmetry only one quaker of the sample was ana- 
lyzed. The final extension of node A was X = 6.045. 
The material of the testing solid was assumed to be: 
Mooney/Rivlin of material parameters C1 = 28.4 psi, 
C2 = 1.42 Ogden with material parameters 

p3 = -1.42 psi21; Ogden with one term a1 = 1.3 and 
pl = 8.875 psi.21 

Because the hole is small with respect to the di- 
mensions of the rectangular block, the analytical 
solution of this problem can be readily obtained as- 
suming that the block is substained as a pure shear 
deformation. The analytical solution of the block 
problem without the small infinitely long cylinder 
along the axis is shown in Figure 2 with solid lines. 
The solution was obtained for both Mooney-Rivlin 
and Ogden's type of material. The FE solution based 
on the Mooney-Rivlin and the Ogden's strain energy 
function is shown in Figure 2. Obviously, the FE 

C Y ~  = 1.3, C Y ~  = 5, a3 = -2, pi = 89.446, pz = 0.1704, 

- 
X 

~~~~~ 

Figure 1 Rubber sheet in extension with a circular hole of radius a, at the center. 
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piane straii 

0 Finite element scl’n based 

Z - AnAytical solution 

-A- 

Figure 2 Edge force per unit thickness versus the extension ratio at point A. 

solution based on the principal axes formulation 
yields accurate numerical results in the case of plane 
strain conditions. 

As a second plane strain example, we consider 
the case of a finite deformation of an infinitely long 
thick-walled cylinder subjected to internal pressure 
pi. For a Mooney-Rivlin material the analytical so- 
lution of this problem is given in Green and Zerna,38 
and for an Ogden material the solution is shown in 
Appendix B. 

The internal pressure as a function of the exten- 
sion ratio of the inner surface is shown in Figure 3 
for different values of the n-parameter. The n-pa- 
rameter defines the ratio of the inner to the outer 
radii of the cylinder. Obviously, there is a critical 
value of the n-parameter (say ncr), such that for any 
n 2 ncr no limit points exist on the pi vs. A, curve. 
In our FE model, a value of 0.25 was assigned for 
the n-parameter. 

Figure 4 shows the FE mesh and the dimensions 
of the infinitely long thick-walled cylinder. The de- 
formed shape of the cylinder for 50 and 300% de- 
formation is depicted in the same figure. Due to the 
symmetry only one-quarter of the cylinder was an- 
alyzed. The FE mesh consisted of 80 elements with 
eight nodes in an element. The total of nodal points 
was 277, and the number of free degrees of freedom 
was 235. The solid line in Figure 5 defines the in- 
ternal pressure pi as a function of the A, (i.e., the 
extension of the internal surface) according to Eq. 
(B.l) with m = 3. The FE solution (shown with open 
circles) based on the Ogden’s strain energy function 
with three terms (the material parameters are the 

same as in the previous example) agrees perfectly 
well with the analytical solution given by Eq. (B.1). 
The FE solution (shown with solid squares) based 
on the Ogden’s strain energy function with one term 
(the same material parameters as in the previous 

1 2 3 4 5 6 - ha - 
Figure 3 
surface. 

Internal pressure vs. the extension of the inner 
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Figure 4 Finite element mesh of an infinitely long 
thicked-walled cylinder subjected to internal pressure. 
Deformed shape at 50 and 300% deformation. 

5.633 

4.225 - 
*€ 
? 
r” 
m-2,817 
u 

1.408 

0 

I 
-Anal. sol’n based o q  0 den’s 

strain energy functionqsef) 
A RE. s o h  based on Mooney 

Rivlin sef 
s o h  based on Ogden’s sef [3 terms1 

, fl I . I1 II II t1 term I 
I I 1 

I 2 3 4 5 
-Aha--, 

Figure 5 Internal pressure vs. extension of the inner 
surface using the Mooney-Rivlin and Ogden’s strain en- 
ergy function. 

- 60 

-4 0 

Trr (PS i 1 

-2 0 

0 

R (in) 

Figure 6 Radial stress vs. undeformed radial distance, 
R (cm). 

600 

500 

400 

T,,(PSi) 

300 

200 

100 

0 

Internal pressure~65 psi 
o Fmite element sol’n 
-Exact sol’n 

7 11 15 19 23 27 
R(in) 

Figure 7 
formed radial distance. 

Circumferential stress distribution vs. unde- 



PENALTY FUNCTION FORMULATION 1069 

contour qr(psi) 
1 -50.0 
2 -40.0 
3 -30.0 
4 -201) 
5 -10.0 
6 OD 

Figure 8 Contour map of radial stress field. 

example) yields a good agreement with the analytical 
solution up to extension A, = 2.2 and after that it 
falls below the analytical curve. The FE solution 
(shown with open triangles) based on the Mooney/ 
Rivlin strain energy function (with constants C1, C2 
as in the previous case) follows the analytical so- 
lution up to A, = 1.8. After that it falls above the 
analytical curve. Therefore, the FE solution based 
on three terms in the Ogden’s strain energy function 
leads to the best agreement to the analytical solution 
of the present problem. A value of 0.0001 was as- 

signed for the penalty parameter e. In order to obtain 
a correct solution the number of load steps for the 
solution of the linearized equations was 50, and the 
number of equilibrium iterations per load step was 
less than five. 

Figure 6 shows the radial stress distribution Trr 
as a function of the radial distance R (Ri I R I Ro). 
The open circles represent the FE solution based on 
the Ogden’s strain energy function with three terms. 
All the points closely follow the analytical solution 
of the stress Trr given via Eqs. (B.3) and (B.5). The 

contour $,(psi) 

1 40.0 
2 60.0 
3 m  

5 1201) 
6 UO.0 
7 i60.0 
8 -  

4 ioao 

Figure 9 Contour map of the circumferential stress field. 
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internal pressure was 65 psi. Figure 7 shows the T O O  
component of the stress field as a function of R. 
Similar plots were reported by 0gde1-1;~ but the ma- 
terial was assumed to follow the Mooney-Rivlin 
strain energy function and the deformation was 
much lower than that reported in this work. 

The contour maps of the radial and the circum- 
ferential stress distribution are depicted in Figures 
8 and 9. 

CONCLUSIONS 

It has been shown that the proposed finite algorithm 
based on the penalty function formulation and the 
general measure of strain yields satisfactory nu- 
merical results for the solution of elastic incom- 
pressible solids subjected to large deformations. This 
model may be easily implemented into the existing 
displacement FE codes, for instance NONSAP, 
COSMOS7, ANSYS, ADINA, TEXLESP, etc. 

APPENDIX A 

Equation (40) can be proven as follows. For plane 
strain conditions the second Piola-Kirchhoff stress 
tensor is given by: 

where the T K L  is given by (29) and the pressure terms 
p andPo via Eqs. (35) and (38), respectively. Taking 
the material derivatives of both sides of Eq. (A.l)  
we obtain, 

Because, 

Eq. (A.2) yields the overall stiffness matrix, that is 

[CI = [CI + [CIO + [CI, (A.4) 

which is identically equal to Eq. (40). The matrix 
[C] is given by Eq. (31) and the matrix [C], is defined 
by 

[CIO = POCk’,C,Z. (A.5) 

The matrix [C], is defined by 

[C], = pCK&C,Z - 

Analytically, the matrix [C], is written as follows: 

1 2poc;2 2PoCf2 -2PoC12C22 
2POCL -2Pocllc12 

SYMMETRIC PO(CllC22 + Cl,) 

(A.7) 

[CIO = 

The matrix [C], may be written as follows: 

where the pressure p is given via Eq. (35) and the 
constant A is equal to 1 / ~ .  

APPENDIX B 

Let Ri and Ro being the inner and outer radii of the 
cylinder. Following Ogden21 it can be easily proven 
that the internal pressure as a function of the ex- 
tension of the inner surface of the cylinder is 

where the following relation holds between the ex- 
tensions A, of the inner surface and the extension 
X b  of the outer surface of the cylinder: 

~6 = ((A: - l)n2 + 1)lI2. (B.2) 

In the above formula n defines the ratio of the in- 
ner to the outer radius of the cylinder, that is, n 

The radial and circumferential stress field within 
= Ri/Ro. 

the cylinder is given by3? 

T,, = -L(r) (B.3) 
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2R2b + b2 
R2(R2 + b) W r )  (B.4) TB8 = -L(r) + 

where the functions L(r)  and +(r)  are given by: 

and 

The constant b is given by 

Also the variable r is connected to the radial distance 
between the inner and the outer radii through the 
following equation: ? = R2 + b. 

The authors are indebted to Dr. P. J. Blatz for helpful 
discussions. Support for this research was provided by the 
0-seal division of Parker Hannifin Corporation, Culver 
City, Los Angeles, CA 90230. 
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